3,094 research outputs found

    Cover

    Full text link

    Dissipation and lag in irreversible processes

    Full text link
    When a system is perturbed by the variation of external parameters, a lag generally develops between the actual state of the system and the equilibrium state corresponding to the current parameter values. We establish a microscopic, quantitative relation between this lag and the dissipated work that accompanies the process. We illustrate this relation using a model system.Comment: 6 pages, 3 figures, accepted for publication in EP

    Asynchronous multiple-access channel capacity

    Get PDF
    The capacity region for the discrete memoryless multiple-access channel without time synchronization at the transmitters and receivers is shown to be the same as the known capacity region for the ordinary multiple-access channel. The proof utilizes time sharing of two optimal codes for the ordinary multiple-access channel and uses maximum likelihood decoding over shifts of the hypothesized transmitter words

    Eavesdropping without quantum memory

    Full text link
    In quantum cryptography the optimal eavesdropping strategy requires that the eavesdropper uses quantum memories in order to optimize her information. What happens if the eavesdropper has no quantum memory? It is shown that the best strategy is actually to adopt the simple intercept/resend strategy.Comment: 9 pages LaTeX, 3 figure

    Hashing protocol for distilling multipartite CSS states

    Full text link
    We present a hashing protocol for distilling multipartite CSS states by means of local Clifford operations, Pauli measurements and classical communication. It is shown that this hashing protocol outperforms previous versions by exploiting information theory to a full extent an not only applying CNOTs as local Clifford operations. Using the information-theoretical notion of a strongly typical set, we calculate the asymptotic yield of the protocol as the solution of a linear programming problem.Comment: 13 pages, 3 figures, RevTeX

    Measuring thermodynamic length

    Full text link
    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out-of-equilibrium. In this paper, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.Comment: 4 pages; Typos correcte

    Note on exponential families of distributions

    Full text link
    We show that an arbitrary probability distribution can be represented in exponential form. In physical contexts, this implies that the equilibrium distribution of any classical or quantum dynamical system is expressible in grand canonical form.Comment: 5 page

    Statistical mechanics of lossy compression using multilayer perceptrons

    Full text link
    Statistical mechanics is applied to lossy compression using multilayer perceptrons for unbiased Boolean messages. We utilize a tree-like committee machine (committee tree) and tree-like parity machine (parity tree) whose transfer functions are monotonic. For compression using committee tree, a lower bound of achievable distortion becomes small as the number of hidden units K increases. However, it cannot reach the Shannon bound even where K -> infty. For a compression using a parity tree with K >= 2 hidden units, the rate distortion function, which is known as the theoretical limit for compression, is derived where the code length becomes infinity.Comment: 12 pages, 5 figure

    Generalized Jarzynski Equality under Nonequilibrium Feedback Control

    Full text link
    The Jarzynski equality is generalized to situations in which nonequilibrium systems are subject to a feedback control. The new terms that arise as a consequence of the feedback describe the mutual information content obtained by measurement and the efficacy of the feedback control. Our results lead to a generalized fluctuation-dissipation theorem that reflects the readout information, and can be experimentally tested using small thermodynamic systems. We illustrate our general results by an introducing "information ratchet," which can transport a Brownian particle in one direction and extract a positive work from the particle

    Telling time with an intrinsically noisy clock

    Get PDF
    Intracellular transmission of information via chemical and transcriptional networks is thwarted by a physical limitation: the finite copy number of the constituent chemical species introduces unavoidable intrinsic noise. Here we provide a method for solving for the complete probabilistic description of intrinsically noisy oscillatory driving. We derive and numerically verify a number of simple scaling laws. Unlike in the case of measuring a static quantity, response to an oscillatory driving can exhibit a resonant frequency which maximizes information transmission. Further, we show that the optimal regulatory design is dependent on the biophysical constraints (i.e., the allowed copy number and response time). The resulting phase diagram illustrates under what conditions threshold regulation outperforms linear regulation.Comment: 10 pages, 5 figure
    • …
    corecore